您的位置:首页 > 心得体会 > 学习心得体会 > 正文

大学数学习题一答案

【www.gongjing999.com--学习心得体会】

篇一:大学数学课后习题答案

习题1

1. (1)不能(2)不能(3)能(4)不能

2. (1)不正确;因为“年轻人”没有明确的标准,不具有确定性,不能作为元素来组成集合.

(2)不正确;对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,故这个集合是由3个元素组成的.

(3)正确;集合中的元素相同,只是次序不同,它们都表示同一个集合.

3. ?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.

4. (1){0,1,2,3,4} (2){3,4} (3){(?1,?1),(0,0),(1,1)}

5. (1){x|x?2?3,x?Z} (2){x|x?x?12?0} (3){(x,y)|y?x,y?x}

6. (1){1,3} (2){1,2,3,5} (3)? (4){1,2,3,4,5,6} (5){2} (6)?

(7){4,5,6} (8){1,3,4,5,6} (9){1,2,3,4,5,6} (10){4,6}

7. 23

A?A?B?B?A?(A?B)?B

?((A?A)?(A?B))?B

?(??(A?B))?B

?(A?B)?B

?(A?B)?(B?B)

?(A?B)?U

?A?B

8. (1)(?5,5) (2)(?2,0) (3)(??,?3]?[1,??) (4)(1,2]

(5)[4,??) (6)(??,4)

9. (1)A?B?{1};A?B?[0,3];A?B?[0,1).

(2)A?B?[2,4];A?B?[?1,4];A?B?[?1,2).

10. (1)(,)(2)(,2)?(2,).

11. (1)不是.定义域不同 (2)不是.定义域不同 (3)不是.定义域不同

(4)是.在公共的定义域[?1,1]上,y??x??x?y??x2

12. (1)(??,?2)?(?2,2)?(2,??) (2)(??,?1]?[1,??) (3)(?1,1] 35223252

(4)(??,??)(5)(?2,2)(6)[1,5]

(7)(?

2?2k?,?

2?2(k?1)?),k?0,?1,?2,? (8)(?2,?1)?(?1,1)?(1,??)

(9)(??,?2)?(3,??) (10)[2,4]

13(1)f(0)?02?3?0?5??5;f(1)?12?3?1?5??1;

f(?1)?(?1)2?3?(?1)?5??7;f(?x)?(?x)2?3?(?x)?5?x2?3x?5; f()?()?3?1

x1x2113?5?2??5. xxx

14. f(x)?f(x?1?1)?(x?1)2?2(x?1)?3?x2?4;

f(x?1)?(x?1)2?4?x2?2x?3. sin(?)??2,f(0)?0?1?1,f(?)???1??. 15. f(?)?2222??2?

x2x2x2?116. ?x?D?(??,??),有f(x)?1???1??1??2. 2221?x1?x1?x

17. (1)单调递减 (2)(??,2]上单调递增;[2,??)上单调递减 (3)(??,1]单调递减;[1,??)上单调递增 (4)单调递增 (5)(??

2?k?,?

2?k?)(k?0,?1,?2,?)上

单调递增; (6)单调递增

18. (1)偶函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)非奇非偶函数

(6)偶函数 (7)非奇非偶函数 (8)奇函数 (9)偶函数 (10)奇函数

19. (1)对定义域内的任意x,因为F(?x)?

函数;

(2)对定义域内的任意x,因G(?x)?

所以G(x)是偶函数.

20. (1)? (2)2? (3)? (4)2?

21. (1)因为?x?(??,??),有f(x?2)?f(x)?f(2)成立,令x??1,则有1[f(?x)?f(x)]?F(x),所以F(x)是偶211[f(?x)?f(x)]??[f(x)?f(?x)]??G(x),22f(1)?f(?1)?f(2),又因为f(x)是(??,??)内的奇函数,所以f(?1)??f(1),所以f(2)?2f(1)?2a,又f(5)?f(3)?f(2)?(f(1)?f(2))?f(2)?f(1)?2f(2),所以

f(5)?5a.

(2)因为f(x)是以2为周期的周期函数,所以f(x?2)?f(x),又已知

f(x?2)?f(x)?f(2),所以f(2)?0,由(1)知f(2)?2a,所以a?0.

222. (1)y?arcsinu,u?1?x (2)y?,u?lnv,v?x

w,2(3)y?u,u?2?v,v?cosx (4)y?eu,u?arctanv,v?

w?1?x

23. (1)y?1?x1bx? (2)y?ex?1 (3)y?x?2 (4)y?(x??1) 1?xkk

24. (1)是 (2)是 (3)是 (4)不是

习题2

1. (1) 0 (2) 1 (3) 0 (4) 0

2.(1)3 (2)2 (3)0 (4) ?? (5) ?

3.两个无穷小的商是不一定是无穷小,例如:

1limn??nn21??? n2limnn??

4. 根据定义证明: 1(1)y?xcos当x?0时为无穷小; x

证明:???0,????,当x??,xcos

(2)y?1?x当x??1时为无穷大. x1?x?? x

证明:?M?0,???M?1,当x??,

5. 求下列极限:

(1)1(2)0

6. 计算下列极限:

(1)0(2)1 2x?111????1?M?1?1?M xxx

(3)2(4)1 2

7. 计算下列极限:

(1)4 (2)?

1(3)2(4) 3

1(5)?(6) 4

(7)-1(8)

?x?1,x?0?x?0,讨论函数在点x?0时的极限情况? 8. 设f(x)??0,

?x?1,x?0?

解:lim-f(x)??1,lim-f(x)?1,f(0)?0,所以f(x)在x?0不存在极限。 x?0x?0

x2?ax?b?5,求a,b 9. 已知limx?11?x

x2?ax?b?5得解:由已知可知:a?b?1?0,得到a??b?1,代入limx?11?x

x2?(b?1)x?b(x?b)(x?1)lim?lim?1?b?5,得b?6,a??7 x?1x?11?x1?x

10. 计算下列极限:

lim?x?cosx?lim?x?0x12x2(1)x?0?2

tanx?sinx1?cosxx21?lim?lim?(2)lim x?0x?0x2?cosxx?02x2?cosx2x3

tan2x22x2

?lim2?2 (3)lim2x?0x?0xx

(4)limx?02??cosx1?cosxsinx2?lim?lim?x?08 sin2x(2??cosx)sin2xx?022?2sinxcosx

xx?1?11??x?2??(5)lim??lim1????x??x?1x?????x?1??e

1?x?(6)lim??? x??x?1e??

1??3?x??(7)lim???lim?1??x??2?xx??x?2????

?(8)lim?1?x?0?x??2?x?1xxx?(x?2)?21? e?e ?1

2

?x2???e(9)lim?x???x2?1???x

(10)limsinx?sin1cosx?lim?cos1 x?1x?1x?11

1?cosxx2

?lim?0(11)limx?0x?02sinxsinx

lim(1?x)tan?x

2(12)x?1?lim(1?x)x?1?12?lim?xx?1x? cos?sin222sin?x

sin3x?2sinx3? (13)lim2?54?sinxx?2

(14) lim

x?cotxx??

22??1

111????存在极限。 1?21?221?2n

111111?????????提示: 2n2n1?21?2221?2211. 证明:数列xn?

11??112. 求极限limn?2?2???2?。 n??n??n?2?n?n???

提示:n?n11?n?n?1 ?n??????2?2222n??n?n??n?n??n??n?2?

2n

13. 求lim。 n??n!

2n2? 提示:n足够大时n!n

篇二:大学数学习题八答案

习题八

1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x,y)|x≠0};

(2) {(x,y)|1≤x2+y2<4};

(3) {(x,y)|y<x2};

(4) {(x,y)|(x-1)2+y2≤1}∪{(x,y)|(x+1)2+y2≤1}.

解:(1)开集、无界集,聚点集:R2,边界:{(x,y)|x=0}. (2)既非开集又非闭集,有界集, 聚点集:{(x,y)|1≤x2+y2≤4}, 边界:{(x,y)|x2

+y2

=1}∪{(x,y)| x2

+y2

=4}. (3)开集、区域、无界集, 聚点集:{(x,y)|y≤x2

}, 边界:{(x,y)| y=x2}.

(4)闭集、有界集,聚点集即是其本身,

边界:{(x,y)|(x-1)2+y2=1}∪{(x,y)|(x+1)2+y2=1}. 2. 已知f(x,y)=x2+y2-xytan

xy

,试求f(tx,ty).

解:f(tx,ty)?(tx)2?(ty)2?tx?tytan

tx2

ty

?tf(x,y).

3. 已知f(u,v,w)?uw?wu?v,试求f(x?y,x?y,xy). 解:f(x+y, x-y, xy) =(x+y)xy+(xy)x+y+x-y =(x+y)xy+(xy)2x. 4. 求下列各函数的定义域:

(1)z?ln(y2

?2x?

1);

(2)z?

?

(3)z?

ln(1?x?

y)

(4)u?

(5)z?

(6)z?ln(y?x)?

(7)u?arccos

解:(1)D?{(x,y)|y2

?2x?1?0}.

(2)D?{(x,y)|x?y?0,x?y?0}.

(3)D?{(x,y)|4x?y?0,1?x?y?0,x?y?0}.

2

2

2

2

2

(4)D?{(x,y,z)|x?0,y?0,z?0}. (5)D?{(x,y)|x?0,y?0,x2

?y}. (6)D?{(x,y)|y?x?0,x?0,x2

?y2

?1}. (7)D?{(x,y,z)|x2

?y2

?0,x2

?y2

?z2

?0}.5. 求下列各极限:

y

(1)lim

ln(x?e)x?1 y?0

(3)lim

x?0xy

y?0

(5)lim

sinxyx?0x

; y?0

解:(1)原式

?ln2.(2)原式=+∞. (3)原式

=lim

1x?0??

y?0

4

.

(4)原式

=lim

x?0xy?1?1

?2.

y?0

(5)原式=lim

sinxyx?0xy

?y?1?0?0.

y?0

1

(x2?y2)

2

2(6)原式=lim

y2

x?02

2

2

x?0y?0

(x?y)e

x?y

2

?lim

x?2e

(x2

?y2

)

?0.

y?0

6. 判断下列函数在原点O(0,0)处是否连续: ?sin(x3?2

2

(1)z??

y3)

?y2

,x?y?0,?x2

??

0,x2

?y2

?0;

(2)lim

1x?0x2

?

y

2

;

y?0

(4)lim

x?0

y?0

2

2

(6)lim

1?cos(x?y)x?0(x2

?y2

.y?0

)e

x2

?y

2

?sin(x3?y3)

,?

(2)z??x3?y3

?0,?

x?y?0,x?y?0;

3

3

33

22

?xy

,?222

(3) (2)z??xy?(x?y)

?0,?

x?y?0,x?y?0;

2

2

22

解:(1)由于0?

sin(x?y)x?y

2

2

33

?

x?yx?y

3

3

332

2

?

sin(x?y)x?y

3

3

33

?(x?y)

sin(x?y)x?y

3

3

33

又lim(x?y)?0,且lim

x?0

y?0

sin(x?y)x?y

3

3

x?0y?0

?lim

sinuu

u?0

?1,

故limz?0?z(0,0).

x?0y?0

故函数在O(0,0)处连续. (2)limz?lim

x?0y?0

sinuu

u?0

?1?z(0,0)?0

故O(0,0)是z的间断点.

(3)若P(x,y) 沿直线y=x趋于(0,0)点,则

limz?lim

x?x

2

22

2

x?0y?x?0

x?0

x?x?0

?1,

若点P(x,y) 沿直线y=-x趋于(0,0)点,则

limz?lim

x(?x)

2

22

2

2

x?0

y??x?0

x?0

x?(?x)?4x

?lim

x

2

2

x?0

x?4

?0

故limz不存在.故函数z在O(0,0)处不连续.

x?0y?0

7. 指出下列函数在向外间断: (1) f(x,y)=

x?y

3

23

x?y

; (2) f(x,y)=

y?2xy?2x

2

2

2

;

(3) f(x,y)=ln(1-x2-y2);

?x?x2?2ey,

(4)f(x,y)=?y

?

0,?

y?0,y?0.

解:(1)因为当y=-x时,函数无定义,所以函数在直线y=-x上的所有点处间断,而在其余

点处均连续.

(2)因为当y2=2x时,函数无定义,所以函数在抛物线y2=2x上的所有点处间断.而在其余各点处均连续.

(3)因为当x2+y2=1时,函数无定义,所以函数在圆周x2+y2=1上所有点处间断.而在其余各点

处均连续.

(4)因为点P(x,y)沿直线y=x趋于O(0,0)时.

limf(x,y)?lim

xx

2

x?0x?0

e

?1

??.

y?x?0

故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数: 22

(1)z=x2

y+

xy

2

; (2)s=

u?vuv;

(3)z=x

ln;

(4)z=lntanxy

;

(5)z=(1+xy)y; (6)u=zxy;

y

(7)u=arctan(x-y)z

; (8)u?xz.

解:(1)

?z?2xy?

1?z2

2x?x

y

2

,

?y

?x?

y

3

.

(2)s?u?

v

?s1uv

u

?u

?v

?

vu

2

,

?s?v

??v

2

?

1u

.

2

(3)?z?x

?lnx2x?

122

2

ln(x?y)?

x

x2

?y

2

,?z?y

?xy?

xy2x2

?y

2

.

(4)?z?

1

?x

?sec

2

xtan

xy?1y?2ycsc2xy

, y

?zx2xx?y

?

1tan

x?sec

2

y

?(?

xy

2

)??y

2

csc

2y

.

y

(5)两边取对数得lnz?yln(1?xy)

?z?x

?(1?xy)y

??yln(1?xy)??y

2

x?(1?xy)y

?

1?xy

?y2(1?xy)

y?1

.

?z

y

?y?(1?xy)??yln(1?xy)??y?y?(1?xy)?

ln(1?xy)?yx??1?xy??

?(1?xy)y?

?xy??ln(1?xy)?

1?xy?.?(6)

?u?x?lnz?z

xy

?y

?uxy?1

?y

?lnz?z

xy

?x

?u?z

?xy?z

(7)?uz(x?y)

z?1?x?

11?[(x?y)z]2

?z(x?y)

z?1

?

1?(x?y)

2z

.

?uz(x?y)

z?1

(?1)

?y)

z?1?y?

?1?[(x?y)z]

2

??

z(x1?(x?y)

2z

.

?uz?y)z

?z

?

(x?y)ln(x?y)ln(x?y)1?[(x?y)z

]

2

?

(x1?(x?y)

2z

.

y

(8)

?uz

?1

?x?

yz

x

. ?uy

?y?xzlnx?

1?1y

z

z

xzlnx.

?u

y

y

?xzlnx????y?

yz?z?z2??

??z2xlnx.29.已知u?

xy

2

?ux?y

,求证:x

?x

?y

?u?y

?3u.

2

证明:

?u(x?y)?x2y

2

222xy3

?x?

2xy(x?y)2

?

xy?(x?y)

2

.

?ux2

y2

?2yx3

由对称性知?y

?(x?y)2

.

x

?u?ux2

y2

于是 (x?y)?x

?y?y

?

3(x?y)

2

?3u.

??1?110.设z?e??

?xy??

,求证:x

2

?zz?x

?y

2

??y

?2z.

??1

1?????1?1证明: ?z?e

?xy??

??1??

1

?????xy??

?x

????x2????x2e,

?

由z关于x,y的对称性得

篇三:大学数学课后习题答案-习题1-习题4

习题1

1. (1)不能(2)不能(3)能(4)不能

2. (1)不正确;因为“年轻人”没有明确的标准,不具有确定性,不能作为元素来组成集合.

(2)不正确;对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,故这个集合是由3个元素组成的.

(3)正确;集合中的元素相同,只是次序不同,它们都表示同一个集合.

3. ?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.

4. (1){0,1,2,3,4} (2){3,4} (3){(?1,?1),(0,0),(1,1)}

5. (1){x|x?2?3,x?Z} (2){x|x?x?12?0} (3){(x,y)|y?x,y?x}

6. (1){1,3} (2){1,2,3,5} (3)? (4){1,2,3,4,5,6} (5){2} (6)?

(7){4,5,6} (8){1,3,4,5,6} (9){1,2,3,4,5,6} (10){4,6}

7. 23

A?A?B?B?A?(A?B)?B

?((A?A)?(A?B))?B

?(??(A?B))?B

?(A?B)?B

?(A?B)?(B?B)

?(A?B)?U

?A?B

8. (1)(?5,5) (2)(?2,0) (3)(??,?3]?[1,??) (4)(1,2]

(5)[4,??) (6)(??,4)

9. (1)A?B?{1};A?B?[0,3];A?B?[0,1).

(2)A?B?[2,4];A?B?[?1,4];A?B?[?1,2).

10. (1)(,)(2)(,2)?(2,).

11. (1)不是.定义域不同 (2)不是.定义域不同 (3)不是.定义域不同

(4)是.在公共的定义域[?1,1]上,y??x??x?y??x2

12. (1)(??,?2)?(?2,2)?(2,??) (2)(??,?1]?[1,??) (3)(?1,1] 35223252

(4)(??,??)(5)(?2,2)(6)[1,5]

(7)(?

2?2k?,?

2?2(k?1)?),k?0,?1,?2,? (8)(?2,?1)?(?1,1)?(1,??)

(9)(??,?2)?(3,??) (10)[2,4]

13(1)f(0)?02?3?0?5??5;f(1)?12?3?1?5??1;

f(?1)?(?1)2?3?(?1)?5??7;f(?x)?(?x)2?3?(?x)?5?x2?3x?5; f()?()?3?1

x1x2113?5?2??5. xxx

14. f(x)?f(x?1?1)?(x?1)2?2(x?1)?3?x2?4;

f(x?1)?(x?1)2?4?x2?2x?3. sin(?)??2,f(0)?0?1?1,f(?)???1??. 15. f(?)?2222??2?

x2x2x2?116. ?x?D?(??,??),有f(x)?1???1??1??2. 2221?x1?x1?x

17. (1)单调递减 (2)(??,2]上单调递增;[2,??)上单调递减 (3)(??,1]单调递减;[1,??)上单调递增 (4)单调递增 (5)(??

2?k?,?

2?k?)(k?0,?1,?2,?)上

单调递增; (6)单调递增

18. (1)偶函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)非奇非偶函数

(6)偶函数 (7)非奇非偶函数 (8)奇函数 (9)偶函数 (10)奇函数

19. (1)对定义域内的任意x,因为F(?x)?

函数;

(2)对定义域内的任意x,因G(?x)?

所以G(x)是偶函数.

20. (1)? (2)2? (3)? (4)2?

21. (1)因为?x?(??,??),有f(x?2)?f(x)?f(2)成立,令x??1,则有1[f(?x)?f(x)]?F(x),所以F(x)是偶211[f(?x)?f(x)]??[f(x)?f(?x)]??G(x),22f(1)?f(?1)?f(2),又因为f(x)是(??,??)内的奇函数,所以f(?1)??f(1),所以f(2)?2f(1)?2a,又f(5)?f(3)?f(2)?(f(1)?f(2))?f(2)?f(1)?2f(2),所以

f(5)?5a.

(2)因为f(x)是以2为周期的周期函数,所以f(x?2)?f(x),又已知

f(x?2)?f(x)?f(2),所以f(2)?0,由(1)知f(2)?2a,所以a?0.

222. (1)y?arcsinu,u?1?x (2)y?,u?lnv,v?x

w,2(3)y?u,u?2?v,v?cosx (4)y?eu,u?arctanv,v?

w?1?x

23. (1)y?1?x1bx? (2)y?ex?1 (3)y?x?2 (4)y?(x??1) 1?xkk

24. (1)是 (2)是 (3)是 (4)不是

习题2

1. (1) 0 (2) 1 (3) 0 (4) 0

2.(1)3 (2)2 (3)0 (4) ?? (5) ?

3.两个无穷小的商是不一定是无穷小,例如:

1limn??nn21??? n2limnn??

4. 根据定义证明: 1(1)y?xcos当x?0时为无穷小; x

证明:???0,????,当x??,xcos

(2)y?1?x当x??1时为无穷大. x1?x?? x

证明:?M?0,???M?1,当x??,

5. 求下列极限:

(1)1(2)0

6. 计算下列极限:

(1)0(2)1 2x?111????1?M?1?1?M xxx

(3)2(4)1 2

7. 计算下列极限:

(1)4 (2)?

1(3)2(4) 3

1(5)?(6) 4

(7)-1(8)

?x?1,x?0?x?0,讨论函数在点x?0时的极限情况? 8. 设f(x)??0,

?x?1,x?0?

解:lim-f(x)??1,lim-f(x)?1,f(0)?0,所以f(x)在x?0不存在极限。 x?0x?0

x2?ax?b?5,求a,b 9. 已知limx?11?x

x2?ax?b?5得解:由已知可知:a?b?1?0,得到a??b?1,代入limx?11?x

x2?(b?1)x?b(x?b)(x?1)lim?lim?1?b?5,得b?6,a??7 x?1x?11?x1?x

10. 计算下列极限:

lim?x?cosx?lim?x?0x12x2(1)x?0?2

tanx?sinx1?cosxx21?lim?lim?(2)lim x?0x?0x2?cosxx?02x2?cosx2x3

tan2x22x2

?lim2?2 (3)lim2x?0x?0xx

(4)limx?02??cosx1?cosxsinx2?lim?lim?x?08 sin2x(2??cosx)sin2xx?022?2sinxcosx

xx?1?11??x?2??(5)lim??lim1????x??x?1x?????x?1??e

1?x?(6)lim??? x??x?1e??

1??3?x??(7)lim???lim?1??x??2?xx??x?2????

?(8)lim?1?x?0?x??2?x?1xxx?(x?2)?21? e?e ?1

2

?x2???e(9)lim?x???x2?1???x

(10)limsinx?sin1cosx?lim?cos1 x?1x?1x?11

1?cosxx2

?lim?0(11)limx?0x?02sinxsinx

lim(1?x)tan?x

2(12)x?1?lim(1?x)x?1?12?lim?xx?1x? cos?sin222sin?x

sin3x?2sinx3? (13)lim2?54?sinxx?2

(14) lim

x?cotxx??

22??1

111????存在极限。 1?21?221?2n

111111?????????提示:单调且有上界, 2n2n1?21?2221?2211. 证明:数列xn?

11??112. 求极限limn?2?2???2?。 n??n??n?2?n?n???

提示:n?n11?n?n?1 ?n??????2?2222n??n?n??n?n??n??n?2?

2n

13. 求lim。 n??n!

2n2? 提示:n足够大时n!n

本文来源:http://www.gongjing999.com/xindetihui/12704/